Advertisements
Advertisements
प्रश्न
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
उत्तर
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
= `[cot(90^circ - 49^circ)]^2/(tan^2 49^circ) - 2 [sin(90^circ - 15^circ)]^2/cos^2 15^circ`
= `tan^2 49^circ/(tan^2 49^circ) - 2 cos^2 15^circ/cos^2 15^circ`
= 1 – 2
= – 1
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.