Advertisements
Advertisements
प्रश्न
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
उत्तर
LHS = (sinθ + 1 + cosθ)(sinθ − 1 + cosθ). secθcosecθ
= [sin2θ − sinθ + sinθcosθ + sinθ − 1 + cosθ + sinθcosθ − cosθ + cos2θ] `1/cosθ1/sinθ ` ...(∵ secθ = `1/cosθ and cosecθ = 1/sinθ`)
= [1 + 2sinθcosθ − 1]`1/cosθ 1/sinθ`
= [2sinθcosθ]`1/cosθ1/sinθ`
= 2 = RHS
Hence proved.
संबंधित प्रश्न
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find sine of 62° 57'
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Prove that:
tan (55° - A) - cot (35° + A)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Write the maximum and minimum values of cos θ.
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of tan 10° tan 15° tan 75° tan 80° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
If cot( 90 – A ) = 1, then ∠A = ?
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.