Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
उत्तर
From the tables, it is clear that sin 40° 42' = 0.6521
sin θ − sin 40° 42' = 0.6525 ; 0.6521 = 0.0004
From the tables, diff of 2' = 0.0004
Hence, θ = 40° 42' + 2' = 40° 44'
APPEARS IN
संबंधित प्रश्न
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 9° 23’ + 15° 54’
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to