Advertisements
Advertisements
प्रश्न
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
उत्तर
Given: `cot θ=1/sqrt3`
`"Base"/"Perpendicular"=1/sqrt3`
`"Base"=1`
`"Perpendicular"=sqrt3`
`"Hypotenuse"= sqrt(("Perpendicular")^2+(Base)^2)`
`"Hypotenuse"=2`
Now we find, `(1-cos^2 θ)/(2- sin^2 θ)`
= `(1- ("Base")^2/("hypotenuse")^2)/ (2-("Perpendicular")^2/("hypotenuse")^2)`
=`(1-(1)^2/(2)^2)/(2-(sqrt3)^2/(2)^2)`
=`(1-1/4)/(2-3/4)`
=`3/5`
Hence the value of `(1-cos^2θ)/(2-sin^2θ)` is `3/5`
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Solve.
`sec75/(cosec15)`
Evaluate.
sin235° + sin255°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find cosine of 9° 23’ + 15° 54’
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
If cot( 90 – A ) = 1, then ∠A = ?
If sin 3A = cos 6A, then ∠A = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.
`tan 47^circ/cot 43^circ` = 1