हिंदी

If C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ Write the Value of 1 − Cos 2 θ 2 − Sin 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 

योग

उत्तर

Given:  `cot θ=1/sqrt3` 

`"Base"/"Perpendicular"=1/sqrt3`

`"Base"=1` 

`"Perpendicular"=sqrt3`

`"Hypotenuse"= sqrt(("Perpendicular")^2+(Base)^2)` 

`"Hypotenuse"=2` 

Now we find, `(1-cos^2 θ)/(2- sin^2 θ)` 

= `(1- ("Base")^2/("hypotenuse")^2)/ (2-("Perpendicular")^2/("hypotenuse")^2)`

=`(1-(1)^2/(2)^2)/(2-(sqrt3)^2/(2)^2)` 

=`(1-1/4)/(2-3/4)`

=`3/5` 

Hence the value of `(1-cos^2θ)/(2-sin^2θ)` is `3/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.4 | Q 9 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


Solve.
`sec75/(cosec15)`


Evaluate.
sin235° + sin255°


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Use tables to find cosine of 9° 23’ + 15° 54’


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


If cot( 90 – A ) = 1, then ∠A = ?


If sin 3A = cos 6A, then ∠A = ?


The value of (tan1° tan2° tan3° ... tan89°) is ______.


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×