मराठी

The Value of Tan 1° Tan 2° Tan 3° ...... Tan 89° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan 1° tan 2° tan 3° ...... tan 89° is 

पर्याय

  • 1

  • −1

  •  0

  • None of these

MCQ

उत्तर

Here we have to find:  `tan 1°tan 2° tan 3°........... tan 89°` 

`tan1° tan 2° tan 3°............... tan 89°` 

`=tan (90°-89°) tan (90°-88°)tan (90°-87°).............. tan 87° tan88° tan 89°`  

`= cot 89° cot 88° cot 87°............tan 87° tan 88° tan 89°` 

`= (cot 89° tan 89°)(cot 88° tan 88°) (cot 87° tan 87°).....(cot 44° tan 44°) tan 45°` 

= `1xx1xx1............1xx1`   `["since cot θ tan θ=1"]` 

=`1` 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 19 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate `(sin 18^@)/(cos 72^@)`


Write all the other trigonometric ratios of ∠A in terms of sec A.


if `cos theta = 4/5` find all other trigonometric ratios of angles θ


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`


Solve.
`cos55/sin35+cot35/tan55`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


Write the maximum and minimum values of sin θ.


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


The value of tan 72° tan 18° is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×