Advertisements
Advertisements
प्रश्न
The value of tan 1° tan 2° tan 3° ...... tan 89° is
पर्याय
1
−1
0
None of these
उत्तर
Here we have to find: `tan 1°tan 2° tan 3°........... tan 89°`
`tan1° tan 2° tan 3°............... tan 89°`
`=tan (90°-89°) tan (90°-88°)tan (90°-87°).............. tan 87° tan88° tan 89°`
`= cot 89° cot 88° cot 87°............tan 87° tan 88° tan 89°`
`= (cot 89° tan 89°)(cot 88° tan 88°) (cot 87° tan 87°).....(cot 44° tan 44°) tan 45°`
= `1xx1xx1............1xx1` `["since cot θ tan θ=1"]`
=`1`
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(sin 18^@)/(cos 72^@)`
Write all the other trigonometric ratios of ∠A in terms of sec A.
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`cos55/sin35+cot35/tan55`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Write the maximum and minimum values of sin θ.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of tan 72° tan 18° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is