Advertisements
Advertisements
प्रश्न
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
उत्तर
\[\begin{array}{l} {\text{LHS}=cos15}^\circ\cos {35}^\circ \cos {ec55}^\circ\cos {60}^\circ \cos {ec75}^\circ \\ \end{array}\]
\[\begin{array}{l}=cos( {90}^0 - {75}^0 )\cos( {90}^0 - {55}^0 )\frac{1}{\sin {55}^0}\times\frac{1}{2}\times\frac{1}{\sin {75}^0} \\ \end{array}\]
\[\begin{array}{l}{=sin75}^0 \sin {55}^0 \frac{1}{\sin {55}^0} \times \frac{1}{2} \times \frac{1}{\sin {75}^0} \\ \end{array}\]\[=\frac{1}{2} = \text{RHS}\]
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
`cos22/sin68`
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If 8 tan x = 15, then sin x − cos x is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.