मराठी

Prove That: Cos15° Cos35° Cosec55° Cos60° Cosec75° = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]

बेरीज

उत्तर

\[\begin{array}{l} {\text{LHS}=cos15}^\circ\cos {35}^\circ \cos {ec55}^\circ\cos {60}^\circ \cos {ec75}^\circ \\ \end{array}\]

\[\begin{array}{l}=cos( {90}^0 - {75}^0 )\cos( {90}^0 - {55}^0 )\frac{1}{\sin {55}^0}\times\frac{1}{2}\times\frac{1}{\sin {75}^0} \\ \end{array}\]

\[\begin{array}{l}{=sin75}^0 \sin {55}^0 \frac{1}{\sin {55}^0} \times \frac{1}{2} \times \frac{1}{\sin {75}^0} \\ \end{array}\]\[=\frac{1}{2} = \text{RHS}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 6.3 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate `(tan 26^@)/(cot 64^@)`

 


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`


Solve.
`cos22/sin68`


Evaluate:

cosec (65° + A) – sec (25° – A)


Use tables to find cosine of 9° 23’ + 15° 54’


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If 8 tan x = 15, then sin x − cos x is equal to 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×