Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
उत्तर
Since, A and B are complementary angles, A + B = 90°
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA)`
= `(sinA + sinB)/(sinA - sinB) + (cos(90^@ - A) - cos(90^@ - B))/(cos(90^@ - A) + cos(90^@ - B))`
= `(sinA + sinB)/(sinA - sinB) + (sinA - sinB)/(sinA + sinB)`
= `((sinA + sinB)^2 + (sinA - sinB)^2)/((sinA - sinB)(sinA + sinB)`
= `(sin^2A + sin^2B + 2sinAsinB + sin^2A + sin^2B - 2sinA)/(sin^2A - sin^2B`
= `2(sin^2A + sin^2B)/(sin^2A - sin^2B)`
= `2(sin^2A + sin^2(90^@ - A))/(sin^2A - sin^2(90^@ - A))`
= `2(sin^2A + cos^2B)/(sin^2A - cos^2B)`
= `2/(sin^2A - (1 - sin^2A))`
= `2/(2sin^2A - 1)`
APPEARS IN
संबंधित प्रश्न
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`