Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
उत्तर
Since, A and B are complementary angles, A + B = 90°
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA)`
= `(sinA + sinB)/(sinA - sinB) + (cos(90^@ - A) - cos(90^@ - B))/(cos(90^@ - A) + cos(90^@ - B))`
= `(sinA + sinB)/(sinA - sinB) + (sinA - sinB)/(sinA + sinB)`
= `((sinA + sinB)^2 + (sinA - sinB)^2)/((sinA - sinB)(sinA + sinB)`
= `(sin^2A + sin^2B + 2sinAsinB + sin^2A + sin^2B - 2sinA)/(sin^2A - sin^2B`
= `2(sin^2A + sin^2B)/(sin^2A - sin^2B)`
= `2(sin^2A + sin^2(90^@ - A))/(sin^2A - sin^2(90^@ - A))`
= `2(sin^2A + cos^2B)/(sin^2A - cos^2B)`
= `2/(sin^2A - (1 - sin^2A))`
= `2/(2sin^2A - 1)`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find cosine of 2° 4’
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
`(sin 75^circ)/(cos 15^circ)` = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)