Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
उत्तर
Since, A and B are complementary angles, A + B = 90°
cosec2 A + cosec2 B
= cosec2 A + cosec2 (90° – A)
= cosec2 A + sec2 A
= `1/sin^2A+1/cos^2A`
= `(cos^2A + sin^2A)/(sin^2Acos^2A)`
= `1/(sin^2Acos^2A)`
= cosec2 A sec2 A
= cosec2 A sec2 (90° – B)
= cosec2 A cosec2 B
APPEARS IN
संबंधित प्रश्न
Solve.
`cos55/sin35+cot35/tan55`
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If the angle θ = –45° , find the value of tan θ.
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.