Advertisements
Advertisements
प्रश्न
If the angle θ= –60º, find the value of cosθ.
उत्तर
We know that,
cos(-α) = cosα
∴ cos(-60°) = cos60°
∴ cos(-60°) = 1/2
∴ cos(-60°) = cosθ = 1/2
∴ cosθ = 1/2
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
sin42° sin48° - cos42° cos48°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
tan (55° - A) - cot (35° + A)
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A and B are complementary angles, then
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Find the value of the following:
sin 21° 21′
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.