Advertisements
Advertisements
प्रश्न
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
उत्तर
`(sin 80°)/(cos 10°)`+ sin 59° sec 31°
= `sin(90° - 10°)/(cos 10°)` + sin (90° - 31°)sec 31°
= `(cos 10°)/(cos 10°) + (cos 31°)/(cos 31°)`
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
Solve.
`cos55/sin35+cot35/tan55`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]