Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
उत्तर
From the tables, it is clear that cos 16° 48’ = 0.9573
cos θ − cos 16° 48’ = 0.9574 − 0.9573 = 0.0001
From the tables, diff of 1’ = 0.0001
Hence, θ = 16° 48’ − 1’ = 16° 47’
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Prove that:
sin (28° + A) = cos (62° – A)
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°