हिंदी

If ∆ABC is right angled at C, then the value of cos (A + B) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If ∆ABC is right angled at C, then the value of cos (A + B) is ______.

विकल्प

  • 0

  • 1

  • `1/2`

  • `sqrt(3)/2`

MCQ
रिक्त स्थान भरें

उत्तर

If ∆ABC is right angled at C, then the value of cos (A + B) is 0.

Explanation:


We know that,

In ∆ABC,

Sum of three angles = 180°

i.e., ∠A + ∠B + ∠C = 180°

But right angled at C

i.e., ∠C = 90°  ...[Given]

∠A + ∠B + 90° = 180°

⇒ A + B = 90°   ...[∵∠A = A]

∴ cos (A + B) = cos 90° = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 8 | पृष्ठ ९०
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 31 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find cosine of 26° 32’


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

sec (70° – θ) = cosec (20° + θ)


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


What is the maximum value of \[\frac{1}{\sec \theta}\] 


Write the value of tan 10° tan 15° tan 75° tan 80°?


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×