Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
उत्तर
2 cos2 A + cos A – 1 = 0
`=>` 2 cos2 A + 2 cos A – cos A – 1 = 0
`=>` 2 cos A (cos A + 1) – 1(cos A + 1) = 0
`=>` (2 cos A – 1)(cos A + 1) = 0
`=>` cos A = `1/2` or cos A = –1
We know `cos 60^circ = 1/2`
We also know that for no value of A(0° ≤ A ≤ 90°), cos A = –1.
Hence, A = 60°
APPEARS IN
संबंधित प्रश्न
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°