Advertisements
Advertisements
प्रश्न
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
उत्तर
cos 74° + sec 67°
= cos(90° – 16°) + sec(90° – 23°)
= sin 16° + cosec 23°
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use trigonometrical tables to find tangent of 37°
Use trigonometrical tables to find tangent of 42° 18'
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of cos2 17° − sin2 73° is
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
The value of tan 72° tan 18° is
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.