Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
उत्तर
We have to prove (cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
We know that
`sin^2 theta + cos^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(cosec theta + sin theta)(cosec theta - sin theta) = cosec^2 theta - sin^2 theta`
`= (1 + cot^2 theta) - (1 - cos^2 theta)`
`= 1 + cot^2 theta - 1 + cos^2 theta`
`= cot^2 theta + cos^2 theta`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
tan(55° - A) - cot(35° + A)
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
Sin 2B = 2 sin B is true when B is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.