हिंदी

Prove the Following Trigonometric Identities. (Cosecθ + Sinθ) (Cosecθ − Sinθ) = Cot2 θ + Cos2θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ

उत्तर

We have to prove  (cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ

We know that

`sin^2 theta + cos^2 theta = 1`

`cosec^2 theta - cot^2 theta = 1`

So,

`(cosec theta + sin theta)(cosec theta - sin theta) = cosec^2 theta -  sin^2 theta`

`= (1 + cot^2 theta) - (1 - cos^2 theta)`

`= 1 + cot^2 theta  - 1 + cos^2 theta`

`= cot^2 theta + cos^2 theta`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 15 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


if `cos theta = 4/5` find all other trigonometric ratios of angles θ


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Evaluate:

tan(55° - A) - cot(35° + A)


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If 8 tan x = 15, then sin x − cos x is equal to 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


Sin 2B = 2 sin B is true when B is equal to ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×