Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
उत्तर
We have to prove `((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
We know that, `sec^2 theta - tan^2 theta = 1`
So
`((1 + cot^2 theta)tan theta)/sec^2 theta = ((1 + cot^2 theta)tan theta)/(1 + tan^2 theta)`
` = ((1 + 1/tan^2 theta)tan theta)/(1 + tan^2 theta)`
`= (((tan^2 theta + 1)/(tan^2 theta)) tan theta)/(1 + tan^ 2 theta)`
`= ((1 + tan^2 theta)tan theta)/(tan^2 theta(1 + tan^2 theta))`
`= 1/tan theta`
`= cot theta`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
What is the value of (cos2 67° – sin2 23°)?
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
cos225° + cos265° - tan245°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If 3 cos θ = 5 sin θ, then the value of
The value of tan 10° tan 15° tan 75° tan 80° is
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`