Advertisements
Advertisements
प्रश्न
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
उत्तर
We know that for a triangle ΔABC
∠A + ∠B + ∠C = 180°
∠B + ∠C = 180° – ∠A
`=> (angle B + angle C)/2 = 90^circ - (angle A)/2`
`=> tan ((B + C)/2) = tan (90^circ - A/2)`
= `cot (A/2)`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate cosec 31° − sec 59°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find cosine of 2° 4’
Use tables to find cosine of 65° 41’
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.