Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
उत्तर
\[\begin{array}{l} LHS = \frac{\cos( {90}^\circ - \theta)\sec( {90}^\circ - \theta)\tan\theta}{\text{cosec} ( {90}^\circ- \theta)\sin( {90}^\circ - \theta)\cot( {90}^\circ - \theta)} + \frac{\tan( {90}^\circ - \theta)}{\cot\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta \text cosec\theta\tan\theta}{\sec\theta\cos\theta\tan\theta} + \frac{\cot\theta}{\cot\theta} \\ \end{array}\]
= 1 + 1
= 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
Write the maximum and minimum values of sin θ.
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
The value of tan 1° tan 2° tan 3°…. tan 89° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
The value of the expression (cos2 23° – sin2 67°) is positive.