Advertisements
Advertisements
प्रश्न
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
उत्तर
\[LHS = \left( \frac{\sin49°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\sin49°} \right)^2 \]
\[ = \left( \frac{\cos\left( 90° - 49° \right)}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos\left( 90° - 49° \right)} \right)^2 \]
\[ = \left( \frac{\cos41°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos41°} \right)^2 \]
= 12 + 12
= 1 + 1
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
What is the value of (cos2 67° – sin2 23°)?
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find cosine of 8° 12’
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If the angle θ = –45° , find the value of tan θ.
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
The value of
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.