Advertisements
Advertisements
प्रश्न
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
उत्तर
\[LHS = \left( \frac{\sin49°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\sin49°} \right)^2 \]
\[ = \left( \frac{\cos\left( 90° - 49° \right)}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos\left( 90° - 49° \right)} \right)^2 \]
\[ = \left( \frac{\cos41°}{\cos41°} \right)^2 + \left( \frac{\cos41°}{\cos41°} \right)^2 \]
= 12 + 12
= 1 + 1
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Write all the other trigonometric ratios of ∠A in terms of sec A.
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.