Advertisements
Advertisements
प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
उत्तर
Given `tan theta = 12/5`
We have to find the value of the expression `(1 + sin theta)/(1 -sin theta)`
From the above figure, we have
`AC = sqrt((AB)^2 + (BC)^2)`
`= sqrt(12^2 + 5^2)`
= 13
`=> sin theta = 12/13`
Therefore
`(1 +sin theta)/(1 + sin theta) = (1 + 12/13)/(1 - 12/13)`
= 25
Hence, the value of the given expression is 25
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
`tan 47^circ/cot 43^circ` = 1