Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
उत्तर
4 sin2 A – 3 = 0
`=> sin^2A = 3/4`
`=> sin A = sqrt(3)/2`
We know `sin 60^circ = sqrt(3)/2`
Hence, A = 60°
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Solve.
sin42° sin48° - cos42° cos48°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 37°
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`