Advertisements
Advertisements
प्रश्न
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
उत्तर
Since Δ ABC is a right angled triangle, right angled at B,
A + C = 90°
∴ `(sec "A".sin "C" - tan "A". tan "C")/sin "B"`
= `(sec "A"(90° - "C")sin "C" - tan(90° - "C")tan "C")/(sin 90°)`
= `("cosec" "C" sin "C" - cot "C" tan "C")/(1)`
= `(1)/sin "C" xx sin "C" - (1)/tan "C" xx tan "C"`
= 1 - 1
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
sin42° sin48° - cos42° cos48°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos2 17° − sin2 73° is
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to