Advertisements
Advertisements
प्रश्न
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
विकल्प
\[\frac{7}{25}\]
1
\[\frac{- 7}{25}\]
\[\frac{4}{25}\]
उत्तर
Given that:` tan θ=3/4`
Since ` tan x= "Perpendicular"/"Base"`
⇒` "Perpendicular"=3`
⇒`"Base"=4`
⇒ `"Hypotenuse"=sert(9+16)`
⇒` "Hypotenuse"=5`
We know that sin θ= `"Prependicular"/"Hypotenuse" and cos θ= "Base"/"Hypotenuse" `
We find:
`cos^2θ-sin ^2 θ`
=`(4/5)^2-(3/5)^2`
=`16/25-9/25`
= `7/25`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of cos2 17° − sin2 73° is
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
The value of the expression (cos2 23° – sin2 67°) is positive.