हिंदी

P If Tan θ = 3 4 Then Cos2 θ − Sin2 θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 

विकल्प

  • \[\frac{7}{25}\]

  •  1

  • \[\frac{- 7}{25}\]

  • \[\frac{4}{25}\]

MCQ

उत्तर

Given that:` tan θ=3/4` 

Since ` tan x= "Perpendicular"/"Base"` 

⇒` "Perpendicular"=3` 

⇒`"Base"=4` 

⇒ `"Hypotenuse"=sert(9+16)` 

⇒` "Hypotenuse"=5` 

We know that  sin θ= `"Prependicular"/"Hypotenuse" and cos θ= "Base"/"Hypotenuse" `

We find: 

`cos^2θ-sin ^2 θ`

=`(4/5)^2-(3/5)^2` 

=`16/25-9/25` 

= `7/25`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 7 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


What is the value of (cos2 67° – sin2 23°)?


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


Solve.
`tan47/cot43`


Solve.
`sec75/(cosec15)`


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Evaluate:

cosec (65° + A) – sec (25° – A)


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


The value of cos2 17° − sin2 73° is 


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×