Advertisements
Advertisements
प्रश्न
The value of the expression (cos2 23° – sin2 67°) is positive.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
Since, (a2 – b2) = (a + b)(a – b)
cos2 23° – sin2 67° = (cos 23° + sin 67°)(cos 23° – sin 67°)
= [cos 23° + sin(90° – 23°)] [cos 23° – sin(90° – 23°)]
= (cos 23° + cos 23°)(cos 23° – cos 23°) ...(∵ sin(90° – θ) = cos θ)
= (cos 23° + cos 23°).0
= 0, which is neither positive nor negative
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
What is the value of (cos2 67° – sin2 23°)?
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
What is the maximum value of \[\frac{1}{\sec \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
The value of tan 1° tan 2° tan 3°…. tan 89° is
If x and y are complementary angles, then ______.