Advertisements
Advertisements
प्रश्न
The value of the expression (sin 80° – cos 80°) is negative.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
We know that,
sin θ increases when 0° ≤ θ ≤ 90°
cos θ decreases when 0° ≤ θ ≤ 90°
And (sin 80° – cos 80°) = (increasing value-decreasing value) which is always equal to a positive value.
∴ (sin 80° – cos 80°) > 0, which is positive ...(Not negative).
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
What will be the value of sin 45° + `1/sqrt(2)`?
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.