Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
рдЙрддреНрддрд░
`sin theta = sqrt3/2`
We know `sin theta = "opposide side"/"Hyotence" = sqrt3/2`
Now consider right-angled Δle ABC
Let x = adjacent sidead
By applying Pythagoras
ЁЭР┤ЁЭР╡2 = ЁЭР┤ЁЭР╢2 + ЁЭР╡ЁЭР╢2
4 = 3+ЁЭСе2
ЁЭСе2 = 4 − 3
ЁЭСе2 = 1
ЁЭСе = 1
`cos = "opposite side"/"Hypotenuse" = 1/2`
`tan = "Oppsite side"/"hypotenuse" = sqrt3/1 = sqrt3`
`cosec theta = 1/sin theta = 1/(sqrt3/2) = 2/sqrt3`
sec = `1/cos theta = (1/1)/2 = 2`
`cot = 1/tan theta = 1/sqrt3`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If cos A = `4/5`, then the value of tan A is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
In the given figure, if sin θ = `7/13`, which angle will be θ?
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.