Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
рдЙрддреНрддрд░
`tan alpha = 5/12`
We know that `tan alpha ="opposite side/adjacent side"= 5/12`
Now consider a right-angled Δle ABC
Let x = hypotenuse .By applying Pythagoras theorem
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
ЁЭСе2 = 52 + 122
ЁЭСе2 = 25 + 144 = 169
ЁЭСе = 13
`sin α = "adjacent side"/"hypotenuse"= 5/13`
`cos α = "adjacent side"/"hypotenuse" = 12/13`
cot α = `1/tan alpha = 12/15``
cosec α = `1/sin alpha = (1/5)/13 = 13/5`
sec α = `1/cos alpha = (1/12)/13 = 13/12`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Find the value of x in the following :
`2sin 3x = sqrt3`
If sin A = `1/2`, then the value of cot A is ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.