हिंदी

In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.

योग

उत्तर

sin θ = `("AB")/("AC")` and tan θ = `("AB")/("BC")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 1 by shaalaa.com

संबंधित प्रश्न

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin C, cos C


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.


if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following:

`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@  - (5 sin 90^@)/(2 cos 0^@)`


Find the value of x in the following :

`2 sin  x/2 = 1`


Find the value of x in the following :

`sqrt3 sin x = cos x`


Find the value of x in the following :

`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`


If `sqrt2 sin (60° – α) = 1` then α is ______.


The value of sin² 30° – cos² 30° is ______.


If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.


3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.


If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.


If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.


If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.


If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.


The value of the expression (sin 80° – cos 80°) is negative.


Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to  ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×