Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
उत्तर
We have
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@` .......(1)
Now we know that
`sin 45^@ = cos 45^@ = 1/sqrt2 and cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`sqrt3 tan 2x = cos 60^@ + sin 45^@ cos 45^@`
`sqrt3 tan 2x = 1/2 + 1/sqrt2 xx 1/sqrt2`
`= 1/2 + 1/(sqrt2 xx sqrt2)`
`=1/2 + 1/2`
`= (1 + 1)/2`
`= 2/2`
= 1
Therefore,
`sqrt3 tan 2x = 1`
`=> tan 2x = 1/sqrt3` .....(2)
Since
`tan 30^@ = 1/sqrt3` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`x = 30^@/2`
`=> x = 15^@`
x = 15
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
sin (45° + θ) – cos (45° – θ) is equal to ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
Find the value of sin 45° + cos 45° + tan 45°.