Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
उत्तर
We have
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@` .......(1)
Now we know that
`sin 45^@ = cos 45^@ = 1/sqrt2 and cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`sqrt3 tan 2x = cos 60^@ + sin 45^@ cos 45^@`
`sqrt3 tan 2x = 1/2 + 1/sqrt2 xx 1/sqrt2`
`= 1/2 + 1/(sqrt2 xx sqrt2)`
`=1/2 + 1/2`
`= (1 + 1)/2`
`= 2/2`
= 1
Therefore,
`sqrt3 tan 2x = 1`
`=> tan 2x = 1/sqrt3` .....(2)
Since
`tan 30^@ = 1/sqrt3` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`x = 30^@/2`
`=> x = 15^@`
x = 15
APPEARS IN
संबंधित प्रश्न
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
Find the value of sin 45° + cos 45° + tan 45°.
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
(3 sin2 30° – 4 cos2 60°) is equal to ______.