Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
उत्तर
We have
cos 2x = cos 60° cos 30° + sin 60° sin 30°
Now we know that
`sin 60^2 = cos 30^@ = sqrt3/2 and sin 30^@ = cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`cos 2x = cos 60^@ cos 30^@ + sin 60^@ sin 30^@`
`cos 2x = 1/2 xx sqrt3/2 + sqrt3/2 xx 1/2`
`= sqrt3/4 + sqrt3/4`
`= (2sqrt3)/4`
Therefore
`cos 2x = (2sqrt3)/4`
Now `(2 sqrt3)/2` get reduced to `sqrt3/2`
Therefore
`cos 2x = sqrt3/2` ....(2)
Since
`cos 30^@ = sqrt3/2` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`=> x = 30^@/2`
Therefore
`x= 15^@`
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
`(sin theta)/(1 + cos theta)` is ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.