Advertisements
Advertisements
प्रश्न
Find the value of sin 45° + cos 45° + tan 45°.
उत्तर
sin 45° + cos 45° + tan 45° = `1/sqrt(2) + 1/sqrt(2) + 1`
= `(1 + 1)/sqrt(2) + 1`
= `2/sqrt(2) + 1`
= `sqrt(2) + 1`
Hence, the value of sin 45° + cos 45° + tan 45° is `sqrt(2) + 1`.
APPEARS IN
संबंधित प्रश्न
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.