Advertisements
Advertisements
प्रश्न
Find the value of sin 45° + cos 45° + tan 45°.
उत्तर
sin 45° + cos 45° + tan 45° = `1/sqrt(2) + 1/sqrt(2) + 1`
= `(1 + 1)/sqrt(2) + 1`
= `2/sqrt(2) + 1`
= `sqrt(2) + 1`
Hence, the value of sin 45° + cos 45° + tan 45° is `sqrt(2) + 1`.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
`(sin theta)/(1 + cos theta)` is ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
In the given figure, if sin θ = `7/13`, which angle will be θ?
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.