Advertisements
Advertisements
प्रश्न
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
उत्तर
sin 45° sin 30° + cos 45° cos 30° …...(i)
We know that by trigonometric ratios we have,
`sin 45^@ = 1/sqrt2 sin 30^@ = 1/2`
`cos 45^@ = 1/sqrt2 cos 30^@ = sqrt3/2`
Substituting the values in (i) we get
`1/sqrt2 . 1/2 + 1/sqrt2 . sqrt3/2`
`= 1/sqrt2 . sqrt3/(2sqrt2) = (sqrt3 + 1)/(2sqrt2)`
APPEARS IN
संबंधित प्रश्न
If sin A = `3/4`, calculate cos A and tan A.
If cot θ = `7/8`, evaluate cot2 θ.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
In the given figure, if sin θ = `7/13`, which angle will be θ?
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.