Advertisements
Advertisements
प्रश्न
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
उत्तर
Proof: L.H.S. = cot θ + tan θ
= `bbcos θ/bbsin θ + bbsin θ/bbcos θ` ......`[∵ cot θ = bbcos θ/bbsin θ, tan θ = bb sinθ/bbcos θ]`
= `(bb(cos^2θ) + bb(sin^2θ))/(bbsin θ xx bbcos θ)` .....`[∵ bb(cos^2θ) + bb(sin^2θ) = 1]`
= `1/(bb sin θ xx bb cos θ)`
= `1/bb sin θ xx 1/bb cos θ`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/bb sin θ, sec θ = 1/bb cos θ]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If sec θ = `1/2`, what will be the value of cos θ?
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.