हिंदी

Evaluate the Following Cos 60° Cos 45° - Sin 60° ∙ Sin 45° - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following

cos 60° cos 45° - sin 60° ∙ sin 45°

उत्तर

cos 60° cos 45° - sin 60° ∙ sin 45° …(i)

By trigonometric ratios we know that,

`cos 60^@ = 1/2 cos 45^@ = 1/sqrt2`

`sin 60^@ = sqrt3/2    sin 45^@ = 1/sqrt2`

By substituting above value in (i), we get

`1/2. 1/sqrt2 - sqrt3/2. 1/sqrt2 => (1 - sqrt3)/(2sqrt2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.2 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.2 | Q 3 | पृष्ठ ४१

संबंधित प्रश्न

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = 11/5`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos theta = 7/25`


if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`


If `sin theta = a/b` find sec θ + tan θ in terms of a and b.


if `sin theta = 3/4`  prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`


Evaluate the following

sin 45° sin 30° + cos 45° cos 30°


Evaluate the Following

4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


(3 sin2 30° – 4 cos2 60°) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×