Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
рдЙрддреНрддрд░
We know `sin theta = "opposite side"/"hypotenuse" = 11/15`
Consider right-angled Δle ACB
Let x = ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ
By applying Pythagoras
ЁЭР┤ЁЭР╡2 = ЁЭР┤ЁЭР╢2 + ЁЭР╡ЁЭР╢2
225 = 121+ЁЭСе2
ЁЭСе2 = 225 -121
ЁЭСе2 = 104
`x = sqrt104`
`cos = "adjacent side"/"hypotenuse" = sqrt(104/15)`
`tan = "opposite side"/"adjacent side" = 11/sqrt104`
`cosec theta = 1/sin theta = 15/11`
`sec = 1/cos theta = 15/sqrt104`
`cot = 1/ tan theta = sqrt104/11`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.