Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
рдЙрддреНрддрд░
We know `sin theta = "opposite side"/"hypotenuse" = 11/15`
Consider right-angled Δle ACB
Let x = ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ
By applying Pythagoras
ЁЭР┤ЁЭР╡2 = ЁЭР┤ЁЭР╢2 + ЁЭР╡ЁЭР╢2
225 = 121+ЁЭСе2
ЁЭСе2 = 225 -121
ЁЭСе2 = 104
`x = sqrt104`
`cos = "adjacent side"/"hypotenuse" = sqrt(104/15)`
`tan = "opposite side"/"adjacent side" = 11/sqrt104`
`cosec theta = 1/sin theta = 15/11`
`sec = 1/cos theta = 15/sqrt104`
`cot = 1/ tan theta = sqrt104/11`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.