Advertisements
Advertisements
प्रश्न
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
उत्तर
Given: 4 tan θ = 3 ⇒ tan θ = 3/4
Let us suppose a right angle triangle ABC right angled at B, with one of the acute angle θ. Let the sides be BC = 3kand AB = 4k, where k is a positive number
By Pythagoras theorem, we get
`AC^2 = BC^2 + AB^2`
`AC^2 = (3k)^2 + (4k)^2`
`AC^2 = 9k^2 + 16k^2`
`AC = sqrt(25k^2)`
`AC = +- 5k`
Ignoring AC = − 5k , as k is a positive number, we get
AC = 5k
if `tan theta = (BC)/(AB) = 3/4` then `sin theta = (BC)/(AC) = 3/5` and `cos theta = (AB)/(AC) = 4/5`
Putting the values in `((4 sin theta - cos theta + 1)/(4 sin theta + cos theta - 1))` we get
`((4xx3/5 - 4/5 + 1)/(4xx 3/5 + 4/5 -1)) = (((12- 4 + 5)/5)/((12 + 4 - 5)/5)) = 13/11`
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.