Advertisements
Advertisements
प्रश्न
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.
उत्तर
We have,
`\implies` tan P = `sqrt(3)`
`\implies` tan P = `(RQ)/(PQ)`
= `sqrt(3)`
= tan 60°
`\implies` P = 60°
So, 2 sin P cos P = 2 × 60° × cos 60°
= `2 xx sqrt(3)/2 xx 1/2`
= `sqrt(3)/2`
APPEARS IN
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
The value of the expression (sin 80° – cos 80°) is negative.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.