मराठी

Evaluate the Following `4/(Cot^2 30^@) + 1/(Sin^2 60^@) - Cos^2 45^@` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the Following

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`

उत्तर

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@` .....(i)

By trigonometric ratios we have

`cot 30^@ = sqrt3    sin 60^@ = sqrt3/2     cos 45^@ = 1/sqrt2`

By substituting above values in (i), we get

`4/(sqrt3)^2 + 1/(sqrt3/2)^2 - (1/sqrt2)^2`

`4/3 + 4/3 - 1/2 = 13/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.2 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.2 | Q 15 | पृष्ठ ४२

संबंधित प्रश्‍न

If cot θ = `7/8`, evaluate cot2 θ.


State whether the following are true or false. Justify your answer.

The value of tan A is always less than 1.


State whether the following are true or false. Justify your answer.

cot A is the product of cot and A.


If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.


If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


What will be the value of sin 45° + `1/sqrt(2)`?


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


Find will be the value of cos 90° + sin 90°.


Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×