Advertisements
Advertisements
प्रश्न
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
उत्तर
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@` .....(i)
By trigonometric ratios we have
`cot 30^@ = sqrt3 sin 60^@ = sqrt3/2 cos 45^@ = 1/sqrt2`
By substituting above values in (i), we get
`4/(sqrt3)^2 + 1/(sqrt3/2)^2 - (1/sqrt2)^2`
`4/3 + 4/3 - 1/2 = 13/6`
APPEARS IN
संबंधित प्रश्न
If cot θ = `7/8`, evaluate cot2 θ.
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
What will be the value of sin 45° + `1/sqrt(2)`?
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
Find will be the value of cos 90° + sin 90°.
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`