Advertisements
Advertisements
प्रश्न
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
उत्तर
Given, `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
Cross multiplying
`(1 + sqrt(3)) (cos θ - sin θ) = (1 - sqrt(3)) (cos θ + sin θ)`
`1(cos θ - sin θ) + sqrt(3)(cos θ - sin θ) = 1(cosθ + sin θ) - sqrt(3) (cos θ + sin θ)`
`cos θ - sin θ + sqrt(3)cos θ - sqrt(3)sin θ = cos θ + sin θ - sqrt(3) cos θ - sqrt(3)sin θ - sin θ + sqrt(3)cos θ = sin θ - sqrt(3)cos θ`
`sqrt(3)cos θ + sqrt(3) cos θ` = sin θ + sin θ
`2sqrt(3)cos θ` = 2 sin θ
`sqrt(3)cos θ` = sin θ
`sqrt(3) = sinθ/cosθ`
tan θ = `sqrt(3)`
Since tan 60° = `sqrt(3)`
Therefore, θ = 60°
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Find the value of x in the following :
`sqrt3 sin x = cos x`
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?