Advertisements
Advertisements
प्रश्न
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
उत्तर
Given, `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
Cross multiplying
`(1 + sqrt(3)) (cos θ - sin θ) = (1 - sqrt(3)) (cos θ + sin θ)`
`1(cos θ - sin θ) + sqrt(3)(cos θ - sin θ) = 1(cosθ + sin θ) - sqrt(3) (cos θ + sin θ)`
`cos θ - sin θ + sqrt(3)cos θ - sqrt(3)sin θ = cos θ + sin θ - sqrt(3) cos θ - sqrt(3)sin θ - sin θ + sqrt(3)cos θ = sin θ - sqrt(3)cos θ`
`sqrt(3)cos θ + sqrt(3) cos θ` = sin θ + sin θ
`2sqrt(3)cos θ` = 2 sin θ
`sqrt(3)cos θ` = sin θ
`sqrt(3) = sinθ/cosθ`
tan θ = `sqrt(3)`
Since tan 60° = `sqrt(3)`
Therefore, θ = 60°
APPEARS IN
संबंधित प्रश्न
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
The value of sin² 30° – cos² 30° is ______.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.