Advertisements
Advertisements
Question
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
Solution
Given, `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
Cross multiplying
`(1 + sqrt(3)) (cos θ - sin θ) = (1 - sqrt(3)) (cos θ + sin θ)`
`1(cos θ - sin θ) + sqrt(3)(cos θ - sin θ) = 1(cosθ + sin θ) - sqrt(3) (cos θ + sin θ)`
`cos θ - sin θ + sqrt(3)cos θ - sqrt(3)sin θ = cos θ + sin θ - sqrt(3) cos θ - sqrt(3)sin θ - sin θ + sqrt(3)cos θ = sin θ - sqrt(3)cos θ`
`sqrt(3)cos θ + sqrt(3) cos θ` = sin θ + sin θ
`2sqrt(3)cos θ` = 2 sin θ
`sqrt(3)cos θ` = sin θ
`sqrt(3) = sinθ/cosθ`
tan θ = `sqrt(3)`
Since tan 60° = `sqrt(3)`
Therefore, θ = 60°
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
If sin A = `3/4`, calculate cos A and tan A.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
If cos (40° + A) = sin 30°, then value of A is ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
What will be the value of sin 45° + `1/sqrt(2)`?
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.