Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
рдЙрддреНрддрд░
`cot theta = 1/sqrt3 (1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
`cot theta = "ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ" = 1/sqrt3`
Let x be the hypotenuse
By applying Pythagoras
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
`x^2 = (sqrt3)^2 + 1`
`x^2 = 3 + 1`
ЁЭСе2 = 3 + 1 ⇒ ЁЭСе = 2
`cos theta = (BC)/(AC) = 1/2`
`sin theta = (AB)/(AC) = sqrt3/2`
`(1 - cos^2 theta)/(2 - sin^2 theta) => (1 - (1/2)^2)/(2 - (sqrt3)/2)^2`
`=> (1 - 1/4)/(2 - 3/4) => (3/4)/(5/4`
`= 3/5`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If sec θ = `1/2`, what will be the value of cos θ?
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.