English

If `Cot Theta = 1/Sqrt3` Show That `(1 - Cos^2 Theta)/(2 - Sin^2 Theta) = 3/5` - Mathematics

Advertisements
Advertisements

Question

If `cot theta = 1/sqrt3` show that  `(1 - cos^2 theta)/(2 - sin^2  theta) = 3/5`

Solution

`cot theta = 1/sqrt3 (1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`

`cot theta = "๐‘Ž๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก ๐‘ ๐‘–๐‘‘๐‘’"/"๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๐‘ ๐‘–๐‘‘๐‘’" = 1/sqrt3`

Let x be the hypotenuse

By applying Pythagoras

๐ด๐ถ2 = ๐ด๐ต2 + ๐ต๐ถ2

`x^2 = (sqrt3)^2 + 1`

`x^2 = 3 + 1`

๐‘ฅ2 = 3 + 1 ⇒ ๐‘ฅ = 2

`cos theta = (BC)/(AC) = 1/2`

`sin theta = (AB)/(AC) = sqrt3/2`

`(1 - cos^2 theta)/(2 - sin^2 theta) => (1 - (1/2)^2)/(2 - (sqrt3)/2)^2`

`=> (1 - 1/4)/(2 - 3/4) => (3/4)/(5/4`

`= 3/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.1 | Q 15 | Page 24
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×