Advertisements
Advertisements
प्रश्न
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
उत्तर
0° | 30° | 45° | 60° | 90° | |
sin | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
cos | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
tan | 0 | `1/sqrt3` | 1 | `sqrt3` | Not def. |
Given that
sin(A + B) = 1
But we know that
sin 90° = 1
Thus, sin (A + B) = sin 90°
∴ A + B = 90° ......(1)
cos(A – B)= `sqrt(3)/2`
But we know that
cos 30° = `sqrt(3)/2`
Thus, cos(A – B) = 30°
∴ A – B = 30° ......(2)
Our equations are
A + B = 90° ......(1)
A – B = 30° ......(2)
Adding (1) and (2)
A + B + A – B = 90° + 30°
2A = 120°
A = `120^circ/2`
A = 60°
Putting A = 60° in (1)
A + B = 90°
60° + B = 90°
B = 90° – 60°
B = 30°
Hence A = 60°, B = 30°
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
secθ . Cot θ= cosecθ ; write true or false
Find the value of x in the following: `sqrt(3)sin x` = cos x
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Evaluate: sin2 60° + 2tan 45° – cos2 30°.