Advertisements
Advertisements
प्रश्न
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
उत्तर
0° | 30° | 45° | 60° | 90° | |
sin | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
cos | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
tan | 0 | `1/sqrt3` | 1 | `sqrt3` | Not def. |
Given that
sin(A + B) = 1
But we know that
sin 90° = 1
Thus, sin (A + B) = sin 90°
∴ A + B = 90° ......(1)
cos(A – B)= `sqrt(3)/2`
But we know that
cos 30° = `sqrt(3)/2`
Thus, cos(A – B) = 30°
∴ A – B = 30° ......(2)
Our equations are
A + B = 90° ......(1)
A – B = 30° ......(2)
Adding (1) and (2)
A + B + A – B = 90° + 30°
2A = 120°
A = `120^circ/2`
A = 60°
Putting A = 60° in (1)
A + B = 90°
60° + B = 90°
B = 90° – 60°
B = 30°
Hence A = 60°, B = 30°
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.